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Abstract 

For short wavelengths, Umweganregung cannot be 
experimentally eliminated. Its average unscaled in- 
tensity for a random orientation of the crystal is 
U(201) = fo,~ (sin 2 0/sin 201)P(01,0,~o ) exp [ -2K(s in  2 0 + 
sin z 012)] dO dq~, where (20,~0) are the spherical coordi- 
nates of a point on the Ewald sphere when the intensity 
measurement is made at (201,0), the angle between the 
two directions being 2012, while K is the slope of a plot 
of In (F(obs))  as a function of sin 2 0, and P(01,0,~o ) is 
the polarization correction appropriate to the double 
reflection. Diffraction intensities were measured for 
epidote and quartz. A plot of (IF(calc)l)/(F(obs)) as 
a function of F(obs) for epidote was considerably 
improved by the subtraction from each intensity 
measurement of a number of counts SU(200, where S 
is an experimental scale factor while U(201) was calcu- 
lated for epidote by numerical integration over the 
Ewald sphere. The refinement residuals for both com- 
pounds improved after correction of the intensities and 
the weights. 

Introduction 

The phenomenon of multiple reflection was first 
observed by Renninger (1937). It has since been 
studied quantitatively by a number of authors and its 
detrimental effect on intensity data is well known. 
Moon & Schull (1964) present a simple theoretical 
survey of the phenomenon and Coppens (1968) 
describes a method for avoiding the large contributions 
of double reflections to measured integrated intensities 
provided that the indices of the intense reflections are 
known. Post (1969) and Gabe, Portheine & Whitlow 
(1973) recognize that multiple reflections sys- 
tematically increase the weak reflection intensities. The 
effect is more pronounced in the compounds with low 
thermal motion. 

Critical comparison of quartz intensity measure- 
ments (Le Page & Donnay, 1976; Le Page, 1978) and 
more recent intensity measurements on quartz showed 
unambiguously that the weak reflection intensities are 
systematically overestimated even though very few 
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individual measurements differ from the average of 
their symmetry-related reflections by amounts sufficient 
to justify their elimination from the data sets. The 
magnitude of the effect depends on the sample, on the 
divergence of the beam and on the data-collection 
method used. Any single large observed intensity 
difference from the average of equivalent intensities can 
be eliminated by rotation about the diffraction vector 
(~-scanning). When performed on systematic absences, 
this experiment shows that the effect is rarely absent. 
Analysis of the refinement results shows that the effect 
was more pronounced in the small Le Page & Donnay 
sample than in the larger Le Page sample, using Mo K ,  
radiation in both cases. It was even smaller when Mo 
Kil I radiation was used, probably due to the shorter 
wavelength and the different intensity-measurement 
method used. Although various effects might contri- 
bute to the increasing of the weak intensities, multiple 
reflection is clearly indicated here by the fact that the 
measurements are repeatable within counting statistics 
but are considerably changed by small rotations about 
the diffraction vector, particularly at low angles. 

There are two ways of regarding the phenomenon of 
multiple reflection: (a) it is an avoidable unwanted 
effect that should be eliminated from the experiment; 
(b) it is an unavoidable effect that should be accounted 
for in the data processing. The first approach is 
effective for long wavelengths where the number of 
reciprocal-lattice nodes in diffraction position at any 
given time is small owing to the smaller size of the 
Ewald sphere. The method suggested by Coppens 
(1968) is a suitable way of dealing with the situation in 
this case. When using a shorter wavelength, however, 
one is forced to the second approach. With the same 
beam divergence, the reciprocal volume capable of 
simultaneous diffraction at a given instant is 10 times 
larger with Mo K~t radiation than with Cu K, ,  while it 
is nearly 15 times larger when Mo Kfl is used. For 
shorter wavelengths, the number of contributing reflec- 
tions increases but the reflectivity of each of them 
decreases owing to various factors giving an overall 
decrease of the effect. 

In these circumstances, the multiple-reflection contri- 
butions of many reflections add up to give a sizeable 
and essentially random effect, especially after averaging 
the symmetry-related reflections. This should be ac- 
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counted for in the data reduction in two ways: (a) the 
expected intensity of multiple reflection should be 
subtracted from each net intensity measurement; (b) 
the variance of the net intensity should take account of 
the random aspect of the effect. It is this second 
approach which will be developed in this paper with no 
attempt being made to avoid the phenomenon. 

Mechanism of multiple reflections 

The mechanism of re-reflection of a wave, whose 
intensity is being measured, along direction (1) (Fig. 1) 
of beams initially propagating along other directions 
(Umweganregung) can be described in the following 
way when the density of nodes in reciprocal space is 
high. We assume that the crystal is unabsorbing, that 
the pathlengths of the various beams are equal and that 
the presence of more than one node in diffraction 
position does not alter the primary intensities reflected 
in the corresponding directions. The kinematical model 
of diffraction is assumed throughout this study. 

The volume element cut out of the Ewald sphere by a 
AOA~o increment of the spherical coordinates of the 
direction (20,~0) contains at a given instant a probable 
number N(20)AOA~o of nodes. The actual number of 
nodes in the volume element will change but the 
probable number is proportional to the volume element. 
Only node 1 need be considered to be moving, because 
any node leaving the reflection condition will probably 
be replaced by another node entering it. This will 
actually improve the averaging because the intensities 
will in general be different and permit us to consider 
that the moduli of the structure factors depend on 20 
only. Each node in this volume element is responsible 
for a diffracted beam (2) reflected from the incident 
beam (0) with reflectivity roz(20,~o ). This intensity is re- 
reflected along beam (1) with average reflectivity 
rzl(20,~o) as long as node 1 satisfies the geometrical 
condition for re-reflection and the duration of that 
condition is tz~(20,qO. Therefore, the integrated inten- 
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Fig. 1. Definition of the angles used in the calculations. 

sity Q~ is increased by a probable Umweganregung 
contribution AQ1 equal to" 

Io f N(20)ro2(20'tp)r21(20'tp)t2~ (20'tp) dO dq~" 
0 , 0  

Evaluation of the individual terms in the integral 

(a) N(20) 

The volume element cut out of the 'thick Ewald 
sphere' by an increment AOAq) is proportional to 
sin z (20)/23AOA~0 (Fig. 2); therefore, N(20) ~ 
sin 2 (20)/J. 3. The expression 'thick Ewald sphere' is used 
here to designate a range of Ewald spheres each corre- 
sponding to a given ray in the incident beam having a 
beam divergence 6. It is not necessary to consider 
absolute intensities; therefore, scale effects arising from 
the crystal volume, the beam divergence, the cell 
volume and the average pathlength need not be con- 
sidered. However, the dependence of the phenomenon 
on the wavelength is of interest. 

(b) r02(20,~0) 

For the purposes of the present analysis, it is 
adequate to consider that all reflections at a given 20 
angle have the same structure factor value IF(20)I = 
e e -ks~n2°/x2. The parameter k allows for the thermal 
motion of the atoms and the 20 dependence of the 
average scattering curve. Experimentally, one finds that 
(Fo(20)) follows this law reasonably well (see Experi- 
mental). Many reflections contribute to the Umwegan- 
regung of a given reflection and the above simpli- 
fication assumes that the resulting average effect is the 
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(a) (b) 
Fig. 2. (a) Thickness B H  of the Ewald sphere at a given 20 angle: 

C B  is a radius of the Ewald sphere of an extreme ray in the beam 
divergence 6; A B  is a circular arc with center O; the angle A O B  is 
equal to 6; the length of the arc A B  is 26 sin 8/2. For small 6, B H  
~ A B  cos 0, or 6 sin 20/2. (b) Area determined by a AOA~o 
increment about the 20,~0 direction: D G  = E F  = 2AO/~., D E  ~ 
G F  ~ sin 20/2A(0; consequently, the area E D F G  is equal to 
2 sin 20/22ASAq). Combining the two results, the volume element 
cut out of the 'thick Ewald sphere' by a dSA~o increment is 
2~ sin 2 20/23 dOAq~. 
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same as would be produced by average reflections. This 
holds for compounds where the repartition of atoms 
can be considered to be random. If this is not the case 
(e.g. when a heavy atom is in a rational position) 
subsets of the intensities would have to be considered 
separately. 

If the beam divergence is larger than the crystal 
mosaic, we satisfy the conditions for peak top intensity 
measurement where no motion is applied to the crystal 
and where the maximum reflected intensity is propor- 
tional to the integrated intensity giving: 

ro2 = (C 1 2 3 PoJsin 20) e - 2 k  sin2 °/22, 

where c~ is a scale factor and Po2 is the appropriate 
polarization factor. 

(c) rz,(28,~p ) 

Each reflection (2) has a diffracted beam divergence 
governed by the mosaic spread. If the kinematical 
model of diffraction is assumed, the average reflectivity 
r2, while in reflection position is proportional to the 
integrated reflection, analogous to r0v 

r21 = (C 2 )t. 3 P2Jsin 20,2) e -2g sin e e.2/a 2, 

where 2/912 is the unoriented angle between the 
directions (1) and (2). 

(d) t21 (20,(p) 

The duration of the reflection condition is equal to 
the thickness at node 1 of the Ewald sphere due to the 

Fig. 3. Duration t2~ of the 2--,1 reflection condition. The speed V N 
of node A normal to the Ewald sphere is its speed V r tangential 
to its circular scan around O multiplied by the cosine of the angle 
0~ between V r and V N. The radius OA of the circular travel is 
2sin 0J2. For a rotation speed co, the normal speed is 
co sin 20J2. Following the result in Fig. 2(a), the thickness of the 
Ewald sphere at A is fisin 20~J2, giving a reflection time t~2 
proportional to sin 20~Jsin 20~. The beams 0, 1 and 2 are 
represented coplanar for ease of drawing, but the reasoning is the 
same if they are not coplanar. 

divergence of beam (2) divided by the speed normal to 
the sphere V N of node 1 in its motion about the origin O 
of the reciprocal lattice; therefore, it is proportional to 
sin 201z/sin 20, (Fig. 3) giving: 

AQ~ = C23 f (sin 20/sin 20~) 
0,~o 

× P021 e-2k(sin2°+ sin201z)/"t'2 dO do. 

where C is a scale factor and P021 is the polarization 
correction appropriate to the double reflection 
developed in Appendix I. 

Method 

The above expression includes an unspecified scale 
factor C prohibiting the calculation of AQv However, 
its unscaled value, U(20a) = AQJC23, can be evaluated 
by numerical integration and then scaled to the experi- 
ment by comparison with the results of a least-squares 
refinement or by comparison with the measured 
intensities of the systematic extinctions when a 
sufficient number of them are present. 

Experimental 

The intensities of quartz and epidote were measured 
using the profile-analysis method of the 0-20 scan of 
Grant & Gabe (1978) (Table 1). The refinement of the 
data using counting-statistics weights gave the residuals 
R = 0-93%, R w = 1.63% for quartz and R = 2.04%, 
R w = 2.73% for epidote. The analysis of both refine- 
ment results showed that the graph of ( IFc l ) / (Fo)  as a 
function of F o was equal to 1.00 over most of the F o 
range, but that it became very significantly less than 
1.00 for small values of F o indicating the over- 
estimation of the weak intensities due to the probable 
presence of multiple reflections. The theoretical 20 
dependence of the multiple-reflection contribution to 
the measured intensity was then calculated in the 
following way. The plot of ln(Fo) as a function of 
sin 2 0 was approximately linear in accordance with the 
hypothesis that (Fo) = c exp (-k/22 sin 2 0). The slope 
of the plot gave k/22 = 3.2 for quartz and 2.4 for 
epidote (Fig. 4). The knowledge of this parameter is 
sufficient to calculate the integral giving AQ1 by 
numerical integration over the Ewald sphere, except for 
a small region surrounding beam (1) which does not 
correspond to a physically meaningful situation [re- 
reflection of beam (1) along beam (1)], giving the 
unscaled expected value of Umweganregung, U(200. 
This value was compared with the experiment by 
calculating S = ((lob s -- Icalc)/U(20)) for the weak 
reflections. The quantity SU(20) is the expected 
number of extra counts per reflection due to Umwegan- 
regung at the given 20 angle. This number of counts 
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(Fig. 5) was subtracted f rom each reflection. The 
average correction corresponds  to 0 . 2 0 %  of  the 
average diffracted intensity for quar tz  and 0 . 3 3 %  for 
epidote. The refinement using the corrected intensities 
and the same weights gave R = 0 . 8 9 %  and R w = 

1 .63% for quar tz  and R = 1 .91% and R w = 2 . 5 2 %  for 
epidote. The plot of  the re-scale factor  as a function of  
F o (Fig. 6) shows a considerable improvement  for the 
small F o. Quar tz  is noncent rosymmetr ic  and has a 
small cell volume. Only about  25 Friedel pairs or 6% of 
the da ta  have F o / F o ( m a x )  < 1/50. In epidote, which is 
cent rosymmetr ic  with e large cell, this number  is about  
700 or nearly 2 0 %  of the data.  This fact  is part ly 
responsible for the smaller improvement  of  the residuals 
for quartz .  

The inclusion of  the multiple-reflection contribution 
in the weights by considering the average contribution 
as a proport ion of  its own o, in a way  that  will be fully 
developed in a subsequent  article on least-squares 

Table 1. R e f i n e m e n t  in format ion  

Sample as in 

Space group 
a (A) 
b (A) 
e (A) 
fl(o) 
Formula unit 
Z 
Radiation and 

range 
Intensity measure- 

ment method 
Independent 

reflections 
Observed 

reflections 
[_> 2a(I)] 

Symmetrically 
related sets 
measured 

Least-squares 
parameters 

Standard refine- 
ment 

Umweganregung 
subtracted from 
intensities 

Umweganregung 
subtracted from 
intensities and 
allowed for in 
weights 

Scattering curves 

Quartz Epidote 

Le Page (1978); 
Le Page & Gabe (1978) 

P3121 
4.9134 

5.4052 

SiOz 
3 

Mo Ka, 20 < 90 ° 

Gabe, Portheine & 
Whitlow (1973) 

P21/m 
8.8877 (14) 
5.6275 (8) 

10.1517 (12) 
115.383 (14) 

Ca2AI2(AI,Fe)Si3OI3H 
2 

Mo Ka, 20 < 90 ° 

Profile analysis of 0/2 0 scan 
(~ 1 min/reflection) 

629 4055 

615 3855 

6 1 

1 7  1 3 0  

Residuals on all observed reflections (%) 

R R w R R,, 

0.93 1.63 2.04 2.73 

0.89 1.63 1.91 2.52 

0.78 1.01 1.80 1.72 

Non-ionized atoms (RHF) from 
International Tables for X-ray 

Crystallography (1974) 

weights, gives the residuals R = 0 . 7 8 %  (0 -83% 
including the unobserved reflections), R,,. = 1 .01% 
(including the unobserved reflections) and R = 1 .80%,  
R w = 1 .72% for epidote. 

Conclusion 

When using Mo radiation and compounds  with small 
thermal motion,  U m w e g a n r e g u n g  is a significant and 
systematic  contr ibutor  to the weak reflection intensities. 
The 20 dependence of  its average contribution has been 
established f rom simple assumptions.  Correct ions  of  
the intensities and the weights for this factor  leads to a 
significant improvement  of  the refinement results. The 
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Fig. 4. Plot of ln(Fo) versus sin 2 0 to obtain the parameter k/2 2 

when it is assumed that Fo = C exp (-k/2 2 sin 2 0). (a) Quartz, (b) 
epidote. 
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present treatment focuses on X-rays, though similar 
problems are met in neutron intensities (for example, 
see Thompson & Grimes, 1977) and the present 
approach would be applicable to neutron intensity 
measurements. 

We wish to thank Dr L. D. Calvert for his continued 
interest in this work. 
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Fig. 5. Extra counts per reflection due to Umweganregung versus 
20 for quartz and epidote. The curves shown are the theoretical 
curves scaled to the experiment by analysis of the least-squares 
results. The quartz curve decreases faster with increasing 20 
angle owing to the larger thermal motion in this compound. 
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Fig. 6. (Fc>/<Fo) as a function of F o before (crosses) and after 
(circles) correction for epidote. The maximum F o is 242 and the 
plotted quantity is 1.000 _+ 6 for F o over 15. Each point corre- 
sponds to the averaging of 190 reflections. The similar plot for 
quartz shows essentially one discrepant point at about 0.9 due to 
the comparatively smaller number of weak reflections in non- 
centrosymmetric compounds. 

APPENDIX 
The polarization correction for multiple reflection 

Assuming an unpolarized incident beam of amplitude E 
propagating along the + X  direction in a Cartesian 
reference system X Y Z  (Fig. 7a), we define two 
diffraction directions: direction (1) in the X Z  plane with 
spherical coordinates (20,,0) and therefore direction 
cosines (cos 20,, 0, sin 20,) in position for intensity 
measurement,  and direction (2) with coordinates (20,~0) 
and direction cosines (cos 20, - s i n  20 sin ~0, sin 20 
cos ~0). In order to calculate the polarization for the 
double reflection 0 --, 2 --, 1, we perform the following 
rotations of the reference system. 

R o t a t i o n  A 

The X Y Z  axes are transformed to X A YA ZA (Fig. 7a) 
by a rotation by an angle ~0 about X. The rotation 
matrix is 0 01 

cos ~o sin ~o 

--sin ~o cos ~o . 

Beam (2) is in the X A Z  A plane with spherical 
coordinates (20,0) and direction cosines (cos20,0,  
sin 20) while beam (1) has coordinates (20,,-~0) and 
direction cosines (cos 20,, sin 201 sin ~0, sin 201 cos ~o). 

. ~/,/, Za 
~0>0 , / 

Y it l ~ A ' ; z 2 o  

y ' " ' " ' " t ' , ,  

o o 
(a) (b) 

Z8 lot 2" l 

Z¢ " . . . .  

...__. , " ~  20, -'~ 
1 

2 (c) (a) 

Fig. 7. Rotations of the reference system for the calculation of the 
polarization of the double reflection 0-,2~1. 
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Rotation B 

Rotation by an angle 2 0 about YA brings X A into X s 
along beam (2) (Fig. 7b). The rotation matrix is 

I cos 20  

0 

- s in  2 0 

01 sin02 l 
0 cos 2 . 

Beam (1) now has the direction cosines (cos 201 cos 20 
+ sin 201 sin 20 cos tp, sin 201 sin ~0, sin 201 cos 20 cos tp 
- cos 20~ sin 20). 

The principal vibration directions of beam (2) are 
along YB and Z~ and, if a mosaic crystal and no 
extinction are assumed, their amplitudes are respec- 
tively cE and cE cos 20, where c is a proportionality 
constant. 

The direction cosines of beam (1) are (cos 2012, 0, 
sin 2012 ) with cos 2012 = cos (1 A XB) = cos 201 cos 20 
+ sin 20~ sin 20 cos tp. From Fig. 7(d) the radiation 
along beam (1) has two independent parallel compo- 
nents for the 2--,1 reflection with amplitudes cE cos/~ 
and cE cos 20 sin p. After reflection, the intensity with 

polarization is ¢~E2(cos2fl + c o s  2 20sin 2p). In the 
same way, the intensity with 7r polarization is 
e~E 2 cos 2 2012(c0s 220COS2fl + sin2/~), where e I is a 
proportionality constant. 

Finally, the polarization correction appropriate to 
the 0--,2-* 1 reflection is 

P021 = ½ [cOS2 fl -k- cos  2 2 0 s i n  2 g + cos  2 2012 

X (COS 220COS2f l  + sin2g)]. 

Rotation C 

Rotation by an angle p about Xn brings Z B into Z c in 
the plane defined by X n and the beam (1). The angle g is 
obtained from the direction cosines of beam (1) with YB 
and Z n (Fig. 7c): 

cos(1 A Ys) 
tan ~ = - 

cos(1/x z~) 
sin 2 01 sin ~0 

cos 201 sin 2 0 -  sin 201 cos 20cos  tp' 

and the rotation matrix is" 

1 0 0 ] 

0 cos g sin p 

0 - s i n  g cos g . 
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Abstract 

A priori estimates of errors in intensities for spheres 
arising from non-sphericity in crystal shape may now 
be readily determined from a recently published table of 
(1/A*)(OA*/BtIR) values [Flack & Vincent (1978). 
Acta Cryst. A34, 489-491]  using an expression given 

by Jeffery & Rose [Acta Cryst. (1964), 17, 343-350].  
However, a new relationship between a(R) and a(r) is 
determined. The effects of crystal radius, non-sphericity 
and wavelength on intensity errors are discussed. The 
importance to the selection of crystals for electron 
density measurements is stressed. Universal curves of 
cr(r)/r, the error due to non-sphericity, against/~r calcu- 
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